Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 150: 105630, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642729

RESUMEN

Immunotoxicology/immunosafety science is rapidly evolving, with novel modalities and immuno-oncology among the primary drivers of new tools and technologies. The Immunosafety Working Group of IQ/DruSafe sought to better understand some of the key challenges in immunosafety evaluation, gaps in the science, and current limitations in methods and data interpretation. A survey was developed to provide a baseline understanding of the needs and challenges faced in immunosafety assessments, the tools currently being applied across the industry, and the impact of feedback received from regulatory agencies. This survey also focused on current practices and challenges in conducting the T-cell-dependent antibody response (TDAR) and the cytokine release assay (CRA). Respondents indicated that ICH S8 guidance was insufficient for the current needs of the industry portfolio of immunomodulators and novel modalities and should be updated. Other challenges/gaps identified included translation of nonclinical immunosafety assessments to the clinic, and lack of relevant nonclinical species and models in some cases. Key areas of emerging science that will add future value to immunotoxicity assessments include development of additional in vitro and microphysiological system models, as well as application of humanized mouse models. Efforts are ongoing in individual companies and consortia to address some of these gaps and emerging science.

2.
FASEB J ; 37(6): e22995, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219526

RESUMEN

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Resultado del Tratamiento , Síndrome de Liberación de Citoquinas , Citocinas , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones SCID
3.
Eur J Nucl Med Mol Imaging ; 50(3): 667-678, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305907

RESUMEN

PURPOSE: Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys. METHODS: 89Zr-based PET/CT imaging of VIR-7831 and VIR-7831-WT was performed up to 14 days post injection. All major organs were analyzed for absolute concentration as well as tissue:blood ratios, with the focus on the respiratory tract, and a physiologically based pharmacokinetics (PBPK) model was used to evaluate the tissue biodistribution kinetics. Radiomics features were also extracted from the PET images and SUV values. RESULTS: SUVmean uptake in the pulmonary bronchi for 89Zr-VIR-7831 was statistically higher than for 89Zr-VIR-7831-WT at days 6 (3.43 ± 0.55 and 2.59 ± 0.38, respectively) and 10 (2.66 ± 0.32 and 2.15 ± 0.18, respectively), while the reverse was observed in the liver at days 6 (5.14 ± 0.80 and 8.63 ± 0.89, respectively), 10 (4.52 ± 0.59 and 7.73 ± 0.66, respectively), and 14 (4.95 ± 0.65 and 7.94 ± 0.54, respectively). Though the calculated terminal half-life was 21.3 ± 3.0 days for VIR-7831 and 16.5 ± 1.1 days for VIR-7831-WT, no consistent differences were observed in the tissue:blood ratios between the antibodies except in the liver. While the lung:blood SUVmean uptake ratio for both mAbs was 0.25 on day 3, the PBPK model predicted the total lung tissue and the interstitial space to serum ratio to be 0.31 and 0.55, respectively. Radiomics analysis showed VIR-7831 had mean-centralized PET SUV distribution in the lung and liver, indicating more uniform uptake than VIR-7831-WT. CONCLUSION: The half-life extended VIR-7831 remained in circulation longer than VIR-7831-WT, consistent with enhanced FcRn binding, while the tissue:blood concentration ratios in most tissues for both drugs remained statistically indistinguishable throughout the course of the experiment. In the bronchiolar region, a higher concentration of 89Zr-VIR-7831 was detected. The data also allow unparalleled insight into tissue distribution and elimination kinetics of mAbs that can guide future biologic drug discovery efforts, while the residualizing nature of the 89Zr label sheds light on the sites of antibody catabolism.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Recién Nacido , Humanos , Distribución Tisular , Macaca fascicularis/metabolismo , SARS-CoV-2/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anticuerpos Monoclonales/metabolismo , Circonio
4.
Environ Health Perspect ; 130(10): 105001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36201310

RESUMEN

BACKGROUND: Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES: The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS: A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION: KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.


Asunto(s)
Sustancias Peligrosas , Sistema Inmunológico , Carcinógenos , Consenso , Sustancias Peligrosas/toxicidad , Preparaciones Farmacéuticas
5.
Regul Toxicol Pharmacol ; 127: 105064, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34656748

RESUMEN

Over the last decade, immunotherapy has established itself as an important novel approach in the treatment of cancer, resulting in a growing importance in oncology. Engineered T cell therapies, namely chimeric antigen receptor (CAR) T cells and T cell receptor (TCR) T cell therapies, are platform technologies that have enabled the development of products with remarkable efficacy in several hematological malignancies and are thus the focus of intense research and development activity. While engineered T cell therapies offer promise in addressing currently intractable cancers, they also present unique challenges, including their nonclinical safety assessment. A workshop organized by HESI and the US Food and Drug Administration (FDA) was held to provide an interdisciplinary forum for representatives of industry, academia and regulatory authorities to share information and debate on current practices for the nonclinical safety evaluation of engineered T cell therapies. This manuscript leverages what was discussed at this workshop to provide an overview of the current important nonclinical safety assessment considerations for the development of these therapeutic modalities (cytokine release syndrome, neurotoxicity, on-target/off-tumor toxicities, off-target effects, gene editing or vector integration-associated genomic injury). The manuscript also discusses approaches used for hazard identification or risk assessment and provides a regulatory perspective on such aspects.


Asunto(s)
Ingeniería Celular/métodos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Linfocitos T/inmunología , Síndrome de Liberación de Citoquinas/fisiopatología , Edición Génica , Inmunoterapia Adoptiva/efectos adversos , Síndromes de Neurotoxicidad/fisiopatología , Receptores de Antígenos de Linfocitos T/fisiología , Medición de Riesgo
6.
Adv Drug Deliv Rev ; 71: 15-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24530633

RESUMEN

Alveolar macrophage (AM) responses are commonly induced in inhalation toxicology studies, typically being observed as an increase in number or a vacuolated 'foamy' morphology. Discriminating between adaptive AM responses and adverse events during nonclinical and clinical development is a major scientific challenge. When measuring and interpreting induced AM responses, an understanding of macrophage biology is essential; this includes 'sub-types' of AMs with different roles in health and disease and mechanisms of induction/resolution of AM responses to inhalation of pharmaceutical aerosols. In this context, emerging assay techniques, the utility of toxicokinetics and the requirement for new biomarkers are considered. Risk assessment for nonclinical toxicology findings and their translation to effects in humans is discussed from a scientific and regulatory perspective. At present, when apparently adaptive macrophage-only responses to inhaled investigational products are observed in nonclinical studies, this poses a challenge for risk assessment and an improved understanding of induced AM responses to inhaled pharmaceuticals is required.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Macrófagos Alveolares/metabolismo , Administración por Inhalación , Aerosoles , Animales , Biomarcadores/metabolismo , Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
7.
Cytokine ; 20(1): 38-48, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12441145

RESUMEN

Recombinant human interleukin (IL)-18 (rHuIL-18) has a potential as a therapeutic agent in cancer and is currently in drug development. Since human IL-18 displays 96% and 100% amino acid sequence homology with cynomolgus monkey and chimpanzee IL-18, respectively, the biological responses to rHuIL-18 were evaluated in these species. A single intravenous dose of rHuIL-18 at 1 or 10mg/kg in cymonolgus monkeys caused a transient reduction in lymphocyte counts, induction of IL-1alpha and tumour necrosis factor alpha (TNF-alpha) mRNA in whole blood cells and a marked increase in plasma neopterin. rHuIL-18 administered to cynomolgus monkeys at doses of 0.3 or 3mg/kg for two 5-day cycles (Days 1-5 and 15-19) resulted in increased monocyte counts, induction of NK cells and concomitant increases in plasma IL-12 and neopterin. Administration of repeat doses of rHuIL-18 at 10mg/kg to chimpanzees was associated with increased monocyte counts, upregulation of FcgammaRI surface expression on monocytes, and increased IL-8, IL-12 and neopterin in plasma. These studies demonstrate, for the first time, the immunostimulatory activity of rHuIL-18 in vivo. The described pharmacological profile of rHuIL-18 in both cynomolgus monkeys and chimpanzees is indicative of the immunotherapeutic potential of rHuIL-18 in the treatment of cancer.


Asunto(s)
Interleucina-18/farmacología , Animales , Citocinas/metabolismo , Humanos , Interleucina-18/administración & dosificación , Macaca fascicularis , Monocitos/efectos de los fármacos , Monocitos/inmunología , Neopterin/biosíntesis , Pan troglodytes , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Subgrupos de Linfocitos T , Taquifilaxis
8.
J Exp Med ; 196(7): 897-909, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12370252

RESUMEN

Ionic signaling pathways, including voltage-dependent potassium (Kv) channels, are instrumental in antigen-mediated responses of peripheral T cells. However, how Kv channels cooperate with other signaling pathways involved in T cell activation and differentiation is unknown. We report that multiple Kv channels are expressed by naive CD4(+) lymphocytes, and that the current amplitude and kinetics are modulated by antigen receptor-mediated stimulation and costimulatory signals. Currents expressed in naive CD4(+) lymphocytes are consistent with Kv1.1, Kv1.2, Kv1.3, and Kv1.6. Effector CD4(+) cells generated by optimal TCR and costimulation exhibit only Kv1.3 current, but at approximately sixfold higher levels than naive cells. CD4(+) lymphocytes anergized through partial stimulation exhibit similar Kv1.1, Kv1.2, and/or Kv1.6 currents, but approximately threefold more Kv1.3 current than naive cells. To determine if Kv channels contribute to the distinct functions of naive, effector, and anergized T cells, we tested their role in immunoregulatory cytokine production. Each Kv channel is required for maximal IL-2 production by naive CD4(+) lymphocytes, whereas none appears to play a role in IL-2, IL-4, or IFN-gamma production by effector cells. Interestingly, Kv channels in anergized lymphocytes actively suppress IL-4 production, and these functions are consistent with a role in regulating the membrane potential and calcium signaling.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos/inmunología , Canales de Potasio con Entrada de Voltaje/fisiología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Señalización del Calcio , Diferenciación Celular , Separación Celular/métodos , Células Cultivadas , Anergia Clonal , Activación de Linfocitos , Linfocitos/citología , Complejo Mayor de Histocompatibilidad , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T alfa-beta/deficiencia , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...